빠른 정답

01	2	06	3	11	3	16	1
02	3	07	4	12	2	17	3
03	4	08	3	13	(5)	18	2
04	(5)	09	1	14	(5)	19	4
05	4	10	(5)	15	1	20	1

1. 정답 ②

[정답 해설]

각각의 원소에 대해 반응 전후에 원자수 보존이 이루어져야 한다. C_2H_6O 를 1몰 연소시켰다고 할 때 반응 전 H의 개수가 6몰이므로 c는 3이고, 따라서 a는 3이다. 반응 전 C의 개수가 2몰이므로 b는 2이다.

따라서 $a \times b = 6$ 이다.

2. 정답 ③

[정답 해설]

- ¬. (가)에서 원소는 O₂(산소) 하나이다.
- 나. 화합물은 두 종류 이상의 원소로 이루어진 물질이므로 (나)에서 화합물은 NaCl 1가지이다.

[오답 해설]

다. (나)에서 분자는 Cl₂ 1가지이다.

3. 정답 ④

[정답 해설]

실험 (가)와 (나)의 반응식은 다음과 같다.

- (7) 2Cu + O₂ \rightarrow 2CuO
- (나) $2CuO + C \rightarrow 2Cu + CO_2$

실험 (가)에서 O의 산화수가 0에서 -2로 감소했으므로 O_2 가 환원되었고, 실험 (나)에서 Cu의 산화수가 +2에서 0으로 감소했으므로 CuO가 환원되었으므로 ④ O_2 , CuO가 정답이다.

4. 정답 ⑤

[정답 해설]

소금(NaCl)은 이온 결합 물질이고, 설탕($C_{11}H_{22}O_{11}$)은 공유 결합 물질이다.

(나) 수용액의 전기전도성 확인

소금은 수용액에서 이온으로 존재하므로 수용액에 전기 가 흐르지만 설탕은 전기가 흐르지 않으므로 구별이 가 능하다.

(다) 불꽃 반응의 불꽃색 확인

금속은 특유의 불꽃색이 존재하기 때문에 소금을 불꽃 반응시키면 Na의 불꽃색인 붉은색이 나타난다. 하지만 설탕은 불꽃색이 없기 때문에 두 물질을 구별하는 것이 가능하다.

[오답 해설]

(가) 고체의 전기전도성 확인

소금과 설탕은 모두 고체 상태에서 전기가 흐르지 않기 때문에 두 물질을 구별 할 수 없다.

5. 정답 ④

[정답 해설]

같은 온도, 같은 압력에서는 기체의 부피 비는 몰수 비와 같다.

총 원자 수는 (몰 수 \times 원자 수)이므로 기체 1L의 부피를 1몰로 가정한다면 A_2B_4 의 총 원자 수는 $3\times6=18$, A_4B_8 의 총 원자 수는 $2\times12=24$ 로 총 원자 수 비는 3:4이다. 따라서 x=4이다.

같은 온도, 같은 압력에서 기체의 단위 부피당 질량비는 분자량 비와 같으므로 A_2B_4 와 A_4B_8 의 분자량 비는 1:2로 y=1이다. 따라서 x+y=5이다.

6. 정답 ③

[정답 해설]

(가)는 인산, (나)는 아세트산이다.

- ¬. (가)와 (나)는 모두 ○에 비공유 전자쌍이 존재한다.
- L. (가)와 (나)는 모두 서로 다른 두 원소가 공유 결합을 이룬 극성 공유 결합이 있다.

[오답 해설]

다. (가)에서는 P가 확장된 옥텟 규칙이 적용되지만,(나)에서는 확장된 옥텟 규칙이 적용된 원자가 없다.

7. 정답 ④

[정답 해설]

- L. (가)는 N에 비공유 전자쌍이 존재하므로 HCl(aq)에서 전자쌍을 제공하는 루이스 염기로 작용한다.
- ㄷ. (나)는 NaOH(aq)에서 H⁺를 내놓을 수 있으므로 브뢴

스테드 로우리 산으로 작용한다.

[오답 해설]

ㄱ. (가)를 구성하는 탄소 수는 5이다.

8. 정답 ③

[정답 해설]

들뜬 상태 원자 A, B의 전자 배치를 통해 전자수를 구하면 각각 8, 11이다. 따라서 A는 O이고, B는 Na이다.

③ A의 홀전자수는 2이고 B의 홀전자수는 1이므로 홀전 자수는 A가 B의 2배이다.

[오답 해설]

- ① A는 2주기 원소이고 B는 3주기 원소이다. 따라서 A 와 B는 다른 주기의 원소이다.
- ② A의 원자가 전자 수는 6이고 B의 원자가 전자 수는 1이다. 따라서 A와 B는 원자가 전자 수가 다르다.
- ④ A의 s 오비탈 전자수는 4이고 B의 s 오비탈 전자수는 5이다. 따라서 A와 B의 s 오비탈 전자수는 다르다.
- ⑤ 전자가 들어있는 p 오비탈 수는 A, B 모두 3개이다.

9. 정답 ①

[정답 해설]

ㄱ. 1g에 들어있는 총 원자수는 메테인이 $\frac{5}{16}$ 몰, 흑연 이 $\frac{1}{12}$ 몰이므로 메테인이 흑연보다 크다.

[오답 해설]

- L. C 원자와 이웃한 원자 사이의 결합각은 메테인이 109.5°, 흑연이 120°이므로 메테인이 흑연보다 작다.
- 다. 1g을 완전 연소시켰을 때 생성되는 CO_2 의 질량은 메테인 : 흑연 = $\frac{1}{16}:\frac{1}{12}$ 이므로 메테인이 흑연보다 작다.

10. 정답 ⑤

[정답 해설]

모두 Ne과 같은 전자 배치를 갖는 이온이므로 이온 반 지름은 원자 번호가 커질수록 작아진다. 따라서 A는 Na, B는 Mg, C는 O, D는 F이다.

L. 같은 주기에서 원자 번호가 증가할수록 유효 핵전하 가 증가하므로 유효 핵전하는 B(Mg)가 A(Na)보다 크다.

C. O와 F는 모두 2주기 원소이다.

[오답 해설]

ㄱ. C는 Na가 아닌 O이다.

11. 정답 ③

[정답 해설]

가장 바깥 전자 껍질에 있는 전자수(최외각 전자수)가 n 일 때 최외각 전자수보다 1만큼 큰 (n+1)번째 전자를 떼어낼 경우 n번째 전자까지보다 전자껍질수가 1만큼 줄어든 전자껍질에서 전자를 떼어내므로 이온화 에너지가 급증한다. 따라서 최외각 전자수가 n일 때 제n+1 이 온화 에너지는 급격히 증가한다고 할 수 있다.

- ㄱ. ⑦ = x+1이다.
- ㄴ. Be은 2족이므로 제3 이온화 에너지가 급격히 증가 한다. 따라서 $E_3 > E_2$ 이다.

[오답 해설]

다. $\frac{E_{n+1}}{E_n}$ 가 최대인 n이 6인 원자는 최외각 전자수가 6 인 것이므로 원자가 전자 수는 6이다.

12. 정답 ②

중성 상태의 원자는 '원자 번호=양성자 수=전자 수'이고, '질량 수=양성자 수+중성자 수'이다. 즉, 전자수+중 성자수=질량수인 원자 X에서 전자수를 a라 하면 중성자수는 2a이므로 질량 수=전자 수+중성자 수를 계산하면 2a=a+6, a=6이다. 같은 방법으로 원자 Y의 전자수는 7, 질량수는 14이며, 원자 Z의 전자수는 6, 질량수는 14이다. 따라서 $X=_6^{12}C$, $Y=_7^{14}N$, $Z=_6^{14}C$ 이다.

[정답 해설]

L. X와 Z는 중성자수만 다른 동위원소이다.

[오답 해설]

- 기. Y는 ¹⁴N이다.
- C. 질량수는 Z_{6}^{-14} C로 14이고 Y_{7}^{-14} N로 14이므로 서로 같다.

12. 정답 ②

[정답 해설]

양성자수+중성자수=질량수이다. 이때 원자 X~Z는 중성이

므로 양성자수=전자수이다.

L. X와 Z의 양성자수는 둘다 6이므로 동위원소이다.

[오답 해설]

- 기. Y의 전자수(=양성자수)는 7이고 질량수가 14이므로 C가 아니다.
- C. Z와 Y의 질량수는 둘다 14이므로 질량수는 Z=Y이다.

13. 정답 ⑤

X, Y, Z는 모두 2주기 원소로 X는 최외각 전자가 5개 이므로 N이고, Y는 최외각 전자가 6개로 O이고, Z 는 최외각 전자가 7개로 F이다.

[정답 해설]

- $L. X_2Z_2$ 는 N_2F_2 로 2중 결합이 있다.
- 다. Y_2Z_2 는 O_2F_2 로 O보다 F의 전기음성도가 더 크기 때문에 산화수는 F가 $^-1$, O가 $^+1$ 이다. 따라서 Y의 산화수는 $^+1$ 이다.

[오답 해설]

¬. 전기음성도는 N보다 O가 더 크므로 X<Y이다.

14. 정답 ⑤

[정답해설]

(가)는 분자식이 C_4H_{10} 이며 H 원자 3개와 결합한 C 원자 $(-CH_3)$ 가 2개이므로 노말-뷰테인이고, (나)는 분자식이 C_4H_8 이며 H 원자 1개와 결합한 C 원자(-CH)가 1개인 불포화 탄화수소이므로 2중 결합이 바깥쪽에 1개 있는 뷰텐이다. (다)는 분자식이 C_3H_6 인 불포화 탄화수소이므로 2중 결합을 1개 포함한 프로펜이다. (가)~ $(-C_1)$ 이 구조식은 다음과 같다.

¬. C₄H₃의 구조 이성질체 중 H 원자와 결합하지 않은 C 원자를 가진 분자는 다음과 같다.

$$H - C - H$$

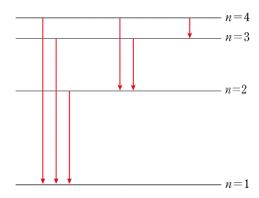
$$H - C - H$$

$$H$$

$$H - C - H$$

L. C₃H₆는 불포화 탄화수소인 프로펜과 고리 모양 포화

- 3 -


탄화수소인 사이클로 프로페인이 가능하다.

□ 단화수소 (가)의 탄소 간 결합각(∠CCC)은 약 109.5°
 □ 이고, 탄화수소 (다)의 탄소 간 결합각(∠CCC)은 약 120°
 □ 다가 다라서 탄소 간 결합각은 (다)>(가)이다.

15. 정답 ①

[정답 해설]

들뜬 상태에 있는 수소 원자의 전자가 주양자수(n) 4 이 하에서 전이할 때 방출하는 모든 빛 에너지는 다음과 같다.

해당하는 빛의 에너지와 빛의 파장을 나타내면 다음 표와 같다. 이 중 $n_{\rm MOO}$ 전 $-n_{\rm MOO}$ 후 = 1에 해당하는 빛의 파장을 명암으로 표시하였다.

$n_{ m ZOI}$ $_{ m Z}$	$n_{전 0 }$ 후	빛 에너지	빛의 파장	
4	1	$\frac{15}{16}k$	$\frac{16}{15}k$	
3	1	$\frac{8}{9}k$	$ \begin{array}{r} \frac{16}{15}k \\ \frac{9}{8}k \\ \frac{4}{3}k \\ \frac{16}{3}k \\ \frac{36}{5}k \\ \frac{144}{7}k \end{array} $	
2	1	$ \frac{15}{16}k $ $ \frac{8}{9}k $ $ \frac{3}{4}k $ $ \frac{3}{16}k $ $ \frac{5}{36}k $ $ \frac{7}{144}k $	$\frac{4}{3}k$	
4	2	$\frac{3}{16}k$	$\frac{16}{3}k$	
3	2	$\frac{5}{36}k$	$\frac{36}{5}k$	
4	4 3		$\frac{144}{7}k$	

즉, 문제에서 표시된 선 $a\sim c$ 는 각각 $n=2\rightarrow n=1$, $n=3\rightarrow n=2$, $n=4\rightarrow n=3$ 으로의 전자 전이에 해당하는 빛의 파장이고, a보다 작은 값을 가지는 빛의 파장이 2개, a와 b 사이의 값을 가지는 빛의 파장이 1개 존재한다. 따라서 이에 해당하는 결과는 ①이다.

16. 정답 ①

[정답해설]

 $M(s) + 2HCl(aq) \rightarrow MCl_2(aq) + H_2(g) - \bigcirc$

 $C(s) + 2H_2(g) \rightarrow CH_4(g) - \bigcirc$

실험 I 에서 금속 M wmg을 충분한 양의 HCl과 모두 반응시킨 후 생성된 H_2 와 C(s) amg을 반응시켰을 때 생성된 CH_4 가 48mL(= 2×10^{-3} 몰)이다. 따라서 화학 반응식 O의 계수로부터 반응한 C의 몰수는 2×10^{-3} 몰이고, 반응한 C의 질량(=P2 $\times 10^{-3}$ 4 $\times 10^{-3}$ 4 $\times 10^{-3}$ 5 $\times 10^{-3}$ 5 $\times 10^{-3}$ 5 $\times 10^{-3}$ 5 $\times 10^{-3}$ 6 $\times 10^{-3}$ 5 $\times 10^$

실험 I의 \bigcirc 반응에서 C가 남았으므로 \bigcirc 반응에서 생성된 H_2 가 모두 반응했다는 것을 알 수 있고, 반응 계수로부터 4×10^{-3} 몰이 생성되었다는 것을 알 수 있다. 따라서 금속 M wmg은 4×10^{-3} 몰이고, M의 원자량은 $\frac{w}{4}$ 이다.

실험 II는 금속 M의 질량이 2wmg이므로 생성된 H_2 의 몰수는 8×10^{-3} 몰이고, C의 질량은 실험 I과 같으므로 반응식 C의 반응 계수로부터 C 3×10^{-3} 몰이 모두 반응한다는 것을 알 수 있다. 따라서 실험 II에서 생성된 CH_4 의 몰수는 3×10^{-3} 몰이 되므로 x=3이다.

따라서 $\frac{a}{x} \times (\text{M의 원자량}) = \frac{36}{3} \times \frac{w}{4} = 3w$ 이다.

17. 정답 ③

[정답해설]

(가)~(다)는 2주기 원소로 이루어진 분자이고, 중심 원자가 1개이며, 3개 이상의 원자로 구성되고, 분자를 구성하는 모든 원자는 옥텟 규칙을 만족한다. 그리고 문제에 주어진 조건인 분자의 구성 원소 수와 결합각 및 전자쌍 수비를 고려하면 (가)~(다)의 분자식은 다음과 같다.

	(가)	(나)	(다)	
분자식	FCN	CF ₄	OF ₂	
구조식	$F-C \equiv N$	$\mathbf{F} = egin{pmatrix} \mathbf{F} & & & & & & & & & & $	F F	
분자 모양	직선형	정사면체	굽은형	

- ㄱ. (가)는 FCN으로 공유 전자쌍 수는 4개이다.
- \cup . (나)는 CF_4 이고 분자 모양이 정사면체이므로 쌍극자 모멘트가 0인 무극성 분자이다.

[오답해설]

C. (다)는 OF2이고 분자 모양은 굽은형이다.

18. 정답 ②

[정답 해설]

용액 I은 HCI(aq) 5mL와 KOH(aq) 10mL를 혼합한 용액이므로 존재하는 이온은 CI-, K+, H+ 혹은 OH-이다. 이중 NaOH(aq) 5mL를 추가로 혼합하여 용액 II를 만들 때 없어지는 B가 H+임을 알 수 있다. 따라서 용액 I의 액성은 산성이고, 이온의 수가 가장 많은 C가 CI-, A는 K+이다. 용액 II의 액성은 염기성이므로 OH-와 Na+가 추가로 존재하는데 용액 I이 산성이므로 이온의 수가 더 많은 E가 Na+이고, D는 OH-이다.

용액 I은 전체 부피가 15mL, 용액 II는 전체 부피가 20mL이므로 문제에 주어진 단위 부피를 5mL로 가정하여 I, II에 존재하는 이온의 종류와 전체 이온수를 정리하면 다음과 같다.

이온의 종류		А	В	С	D	Е
		K ⁺	H ⁺	Cl⁻	OH⁻	Na⁺
단위 부피당 이온 수	I	4 <i>N</i>	4N	8 <i>N</i>	0	0
	II	3 <i>N</i>	0	6 <i>N</i>	9 <i>N</i>	12 <i>N</i>
전체 이온 수	I	12 <i>N</i>	12 <i>N</i>	24 <i>N</i>	0	0
	II	12 <i>N</i>	0	24 <i>N</i>	36 <i>N</i>	48 <i>N</i>

이에 따라 혼합 전 용액의 단위 부피당 이온수를 계산하면 HCl(*aq*): NaOH(*aq*) = 1 : 2이다.

HCl(aq) 10mL에 양이온인 H⁺가 10N만큼 있다고 가정하면 단위 부피당 전체 양이온수(n)은 1(N/mL)로 가정할 수있다. NaOH(aq)를 조금씩 넣는다면 NaOH(aq) 5mL까지는 중화 반응이 일어나므로 전체 양이온 수가 10N으로 변하지 않는다. 이 때 전체 부피는 15mL로 증가하므로 단위부피당 전체 양이온수(n)는 $\frac{2}{3}$ 으로 감소한다. NaOH(aq)가 20mL만큼 들어갔다면 전체 양이온수는 40N이 되고,전체 부피는 30mL이다. 따라서 단위 부피당 전체 양이온수(n)는 $\frac{4}{3}$ 이고 1보다 크다. 이를 만족하는 그래프는 ②이다.

19. 정답 ④

[정답 해설]

탄화수소의 일반적인 연소 반응식은 다음과 같다.

$$C_xH_y + (x + \frac{y}{4})O_2 \rightarrow xCO_2 + \frac{y}{2}H_2O$$

따라서 탄화수소의 분자량은 12x+y이고, 생성된 물질의 전체 몰 수는 $x+\frac{y}{2}$ 이다.

탄화수소 X k몰을 완전 연소시킬 때 질량은 (12x+y)k=8이고, 생성된 물질의 전체 몰수는 $(x+\frac{y}{2})k$ =1.5이다.

이에 따라 비례식을 세우면 $12x+y:x+\frac{y}{2}=8:\frac{3}{2}$ 이다.

따라서 x=1, y=4이고, 탄화수소 X는 CH_4 이다.

같은 방식으로 탄화수소 Y를 구하면

 $12x + y : x + \frac{y}{2} = 8 : 1$ 이고, x = 3, y = 4이다. Y는 실험식과 분자식이 같으므로 Y는 C_3H_4 이다.

따라서 $\frac{X 의 분자량}{Y 의 분자량} = \frac{16}{40} = \frac{2}{5}$ 이다.

20. 정답 ①

실험 과정 (나)에서 A^{a+}가 모두 환원되므로 반응성은 금속 C가 금속 A보다 크고, 과정 (다)에서 B^{b+}가 모두 환원되고, 넣어준 금속은 A와 C인데 (나)에서 석출된 금속은 반응하지 않는다고 했으므로 반응성은 C>B>A이다. 과정 (나)와 (다)에서 수용액에 들어있는 A^{a+}와 B^{b+}는 모두 금속 C와 반응한다는 것을 알 수 있고, 반응이 진행될수록 금속 C의 몰수는 감소한다.

만약, 과정 (7)의 C(s): 비커 I의 양이온: 비커 I의 양이온의 몰수 비를 10:2:2k라고 가정하면, 과정 (나)에서 A^{a^+} 2몰이 모두 환원될 때 C^{c^+} 3몰이 생성되고, 전하량보존에 의해 a=3, c=2가 된다.

따라서 과정 (나) 이후 비커 I 에는 C^{2+} 가 3몰과 금속 A 2몰, 금속 C 7몰이 들어있고, 비커 II에는 B^{b+} 2몰이 들어있다.

과정 (다)는 B^{b+} 2몰이 들어있는 비커에 금속 A 2몰, 금속 C 7몰을 넣어 반응시킨 후 몰수비가 C(s): 비커 I 의 양이온:비커 I의 양이온=6:3:1가 되므로 B^{b+} 2몰이 C^{2+} 1몰과 반응하고, b=1이다.

정리하여 표로 나타내면 다음과 같다.

	몰 수				
	C(s)	비커 I 의 양이온	비커Ⅱ의 양이온		
(가)	10	2	2		
(나)	7	3	2		
(다)	6	3	1		

따라서 $\frac{x \times y}{a} = \frac{1 \times 3}{3} = 1$ 이 된다.

- 5 -